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Modelling and forecasting monthly Brent crude oil prices:  
a long memory and volatility approach 

Remal Shaher AlـGounmeein1, Mohd Tahir Ismail2 

ABSTRACT  

The Standard Generalised Autoregressive Conditionally Heteroskedastic (sGARCH) model 
and the Functional Generalised Autoregressive Conditionally Heteroskedastic (fGARCH) 
model were applied to study the volatility of the Autoregressive Fractionally Integrated 
Moving Average (ARFIMA) model, which is the primary objective of this study. The other 
goal of this paper is to expand on the researchers' previous work by examining long memory 
and volatilities simultaneously, by using the ARFIMA-sGARCH hybrid model and 
comparing it against the ARFIMA-fGARCH hybrid model. Consequently, the hybrid 
models were configured with the monthly Brent crude oil price series for the period from 
January 1979 to July 2019. These datasets were considered as the global economy is currently 
facing significant challenges resulting from noticeable volatilities, especially in terms of the 
Brent crude prices, due to the outbreak of COVID-19. To achieve these goals, an R/S analysis 
was performed and the aggregated variance and the Higuchi methods were applied to test 
for the presence of long memory in the dataset. Furthermore, four breaks have been detected: 
in 1986, 1999, 2005, and 2013 using the Bayes information criterion. In the further section 
of the paper, the Hurst Exponent and Geweke-Porter-Hudak (GPH) methods were used to 
estimate the values of fractional differences. Thus, some ARFIMA models were identified 
using AIC (Akaike Information Criterion), BIC (Schwartz Bayesian Information Criterion),  
AICc (corrected AIC), and the RMSE (Root Mean Squared Error). In result, the following 
conclusions were reached: the ARFIMA(2,0.3589648,2)-sGARCH(1,1) model and the 
ARFIMA(2,0.3589648,2)-fGARCH(1,1) model under normal distribution proved to be the 
best models, demonstrating the smallest values for these criteria. The calculations conducted 
herein show that the two models are of the same accuracy level in terms of the RMSE value, 
which equals 0.08808882, and it is this result that distinguishes our study. In conclusion, 
these models can be used to predict oil prices more accurately than others. 
Key words: ARFIMA, volatility, fGARCH, sGARCH, modelling and forecasting, hybrid 
model.  
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1. Introduction 

Over the years, the study of oil price and volatility has remained one of the most 
important economic trends in terms of increasing investment and minimizing risk. 
Therefore, it is necessary to use an accurate statistical method to know the changes in 
price in terms of increase and decrease, through what is known as long memory 
(Mostafaei and Sakhabakhsh, 2012). 

Long memory is a phenomenon we may sometimes face when analysing the time 
series data where long-term dependence between two points increases the amount of 
distance between them (Bahar et al., 2017). Usually when modelling long memory 
behaviour for any time series, such as mathematics, economics, among others; the 
operation can be more accurate by relying on the Autoregressive Fractionally 
Integrated Moving Average (ARFIMA) models compared with Autoregressive 
Integrated Moving Average (ARIMA) models. It can also have an important impact in 
the financial field (Bhardwaj and Swanson, 2006), where long memory models are one 
of the most important models used in the analysis of time series (Karia et al., 2013). 
ARFIMA model was fitted for the time series data either to better understand the data 
or to predict the future points in the series (forecasting). The use of forecasting in 
economic and financial fields is very important at the national, regional and 
international levels. It helps investors to reduce financial risks and increase the profits 
in the volatility of the global economy. The ARFIMA model was created by Granjer and 
Joyeux (1980) as mentioned by Mostafaei and Sakhabakhsh (2012) to capture the long 
memory behaviour of this time series data. The long memory feature exists if the 
autocorrelation function (ACF) decays more slowly than the exponential decay 
described by Bahar et al. (2017) or detected by using the statistical methods, namely 
Hurst Exponent as explained in Beran (1994). Besides, it is a known fact that long 
memory characteristics observed in data can be generated by a nonstationary structural 
break, as mentioned by Ohanissian et al. (2008). Therefore, the importance of testing 
for structural breaks in the conditional mean of a time series is necessary, as it 
determines that long memory is real or fake, as pointed out by Diebold and Inoue 
(2001), Granger and Hyung (2004) and Ohanissian et al. (2008). Therefore, the break 
detection procedure exhibits desirable properties both in the presence of breaks (stable 
potency across multiple breaks), as pointed out in Pretis et al. (2016). Besides, 
performing structural break testing when estimating the ARFIMA model is of great 
importance as it increases accuracy and prediction confidence. 

On the other hand, volatility is an important consideration for any time series, 
especially in oil prices. Volatility is noticeable in studies related to financial, economic, 
tourism and other areas, where the data is widely scattered (Tendai and Chikobvu, 
2017; Akter and Nobi, 2018). As it is known, there are obvious volatilities shown in 
some types of time series especially in crude oil prices (Lee and Huh, 2017). Therefore, 
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it was necessary to study these volatilities to avoid inaccuracies in the development of 
plans and strategies for making important decisions or for future predictions necessary. 
Moreover, to know their impact when forecasting to avoid any financial risks that may 
cause losses to the investor as the forecasting of financial time series data is yet as one 
of the most difficult tasks due to the non-stationary and non-linearity, as studied by 
Ismail and Awajan (2017). Also, Ramzan et al. (2012) showed that one category of 
models which has confirmed successful in forecasting volatility in many cases is the 
GARCH family of models. This is studied here by Standard Generalized Autoregressive 
Conditionally Heteroskedastic (sGARCH) model and Functional Generalized 
Autoregressive Conditionally Heteroskedastic (fGARCH) model. Based on the reason 
above we are choosing to study the long memory and volatility in this study, due to the 
modality of Brent crude oil prices grow exponentially, nonstationary and are volatile. 
These phenomena are popular features found in many large-scale data. 

2. Literature review 

For many years, many studies have been published that relate to the modelling and 
forecasting crude oil price (Yu et al., 2008; Aamir and Shabri, 2015; Sehgal and Pandey, 
2015; Bahar et al., 2017; Lee and Huh, 2017; Yu et al., 2017; He, X. J., 2018; Yin et al., 
2018). One of the old studies was by Yu et al. (2008), where they proposed using an 
empirical mode decomposition that depends on the learning model of the neural 
network group. The experimental results showed that the proposed model is a very 
capable approach to predicting international crude oil prices. Later, Aamir and Shabri 
(2015) used Auto-regressive Integrated Moving Average (ARIMA), Generalized Auto-
regressive Conditional Heteroscedasticity (GARCH) and hybrid ARIMA-GARCH for 
modelling and forecasting monthly crude oil price of Pakistan. They found that the 
ARIMA-GARCH model is suitable and perform best based on the value of Akaike's 
Information Criterion (AIC) and Root Mean Squared Error (RMSE). Meanwhile, 
Sehgal and Pandey (2015) showed that Artificial Intelligent methods widely use 
forecasting oil prices as an alternative to traditional methods. Then, Lee and Huh (2017) 
suggested an alternative model which predicts the oil price using a Bayesian approach 
with informative priors. While Yu et al. (2017) found that Support Vector Machine 
(SVM) model outperformed Feed-Forward Neural Networks (FNN), Auto-Regressive 
Integrated Moving Average (ARIMA) model, Fractional Integrated ARIMA 
(ARFIMA) model, Markov-Switching ARFIMA (MS-ARFIMA) model, and Random 
Walk (RW) model for forecasting one-step or multi-step of crude oil price. In contrast, 
Bahar et al. (2017) used West Texas Intermediate daily data from 2/January/1986 to 
31/August/2016, where the result showed that the price of crude oil has structural 
breaks feature. Moreover, the forecasting result showed high accuracy with geometric 
Brownian motion when compared with the mean-reverting Ornstein-Uhlenbeck 
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process for the short term. In 2018, He, X. J. identified the appropriate model for crude 
oil price prediction among several models used for weekly price data during the period 
2009-2017. Machine learning Support Vector Regression (SVR) was found the best 
model. On the other hand, Yin et al. (2018) used numerous predictor variables with a 
new time-varying weight combination method where the results showed strong 
performance in forecasting the oil price. 

Recently, many authors such as Fazelabdolabadi (2019) and Nyangarika et al. 
(2019) have still been interested in oil price prediction in terms of choosing the best 
predictive model. Nyangarika et al. (2019) used exponential smoothing to modify an 
Auto-Regressive Integrated Moving Average (ARIMA) model for the Brent crude oil 
price and Gas price data during the period from Jan/1991 to Dec/2016. In contrast, 
Fazelabdolabadi (2019) proposed the forecasting of the crude oil prices by applying a 
hybrid Bayesian Network (BN) method. The results showed that the proposed method 
is a good choice for short-term forecasting.  

As mentioned previously, several models were used for modelling and forecasting 
the price of crude oil. The ARFIMA model is one of the famous models used in the 
analysis of time series (Karia et al., 2013) and understands the behaviour of the data, 
specifically crude oil prices. Jibrin et al. (2015) also used the ARFIMA model to study 
and forecast crude oil prices using weekly West Texas Intermediate and Brent series for 
the period 15/5/1987 to 20/12/2013, and explained that the WTI series and the Brent 
series have three breaks in the years 1999, 2004, 2008 and 1999, 2005, 2009, respectively. 
Bahar et al. (2017) used West Texas Intermediate daily data from 2/January/1986 to 
31/August/2016, and the result showed that the price of crude oil had structural breaks 
feature. Also, there are previous studies that used volatility and hybrid models to 
describe the movement of crude oil prices. Hybrid models are an important method for 
studying the relationship between long memory and volatility. Among these studies, 
Manera et al. (2004) estimated the dynamic conditional correlations in the returns on 
Tapis oil spot and one-month forward prices for the period from 2 June 1992 to 16 
January 2004, using CCCMGARCH (Constant Conditional Correlation Multivariate 
GARCH) model, VARMAGARCH (Vector Autoregressive Moving Average GARCH) 
model, VARMA-AGARCH (VARMA–Asymmetric GARCH) model, and DCC 
(Dynamic Conditional Correlation) model. The result shows that the ARCH and 
GARCH effects for spot (forward) returns are significant in the conditional volatility 
model for spot (forward) returns. Moreover, the multivariate asymmetric effects are 
significant for both spot and forward returns. Also, the calculated constant conditional 
correlations between the conditional volatilities of spot and forward return are virtually 
identical using CCC-GARCH(1,1), VAR(1)-GARCH(1,1) and VAR(1)-
AGARCH(1,1). After that, in (2013) Kang and Yoon examined the volatility models 
and their forecasting abilities for three types of petroleum futures contracts traded on 
the New York Mercantile Exchange (West Texas Intermediate crude oil, heating oil #2, 
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and unleaded gasoline) particularly regarding volatility persistence (or long-memory 
properties). These models are ARIMA–GARCH, ARFIMA–GARCH, ARFIMA–
IGARCH, and ARFIMA–FIGARCH. Although the ARFIMA–FIGARCH model better 
captures long-memory characteristics of returns and volatility, the out-of-sample 
analysis indicates that there is no single model for all three types of petroleum futures 
contracts, and this calls on investors to exercise caution when measuring and 
forecasting volatility (risk) in petroleum futures markets. As for Akron and Ismail 
(2017), they proposed a hybrid GA-FEEMD (Genetic Algorithm and Fast Ensemble 
Empirical Mode Decomposition) model for forecasting crude oil price time-series data. 
The results showed that the proposed hybrid model improved the forecasting accuracy 
of the data, compared with ARIMA and artificial neural network methods. On the other 
hand, Daniel Ambach and Oleksandra Ambach (2018) conducted a study on the 
application of a periodic regression model with the ARFIMA-GARCH residual process 
to model and predict the oil price, whereas the hybrid model provided some advantages, 
including that it captures long memory and conditional heteroscedasticity, but it failed 
to capture the periodicity in a good way. Besides, for the first lag of the squared 
standardized residuals, the proposed model showed a remaining presence of 
correlation, which is not satisfying at all. Therefore, it should be extended.  

As a summary, previous studies have shown that there are mixed results in terms 
of selecting the appropriate model for the modelling and forecasting of crude oil prices. 
Thus, the current study focuses on constructing a time series model to forecast the 
monthly Brent crude oil price using ARFIMA with the GARCH family approach. 
Furthermore, due to the lack of studies in which crude oil prices have been predicted 
by comparing the ARFIMA-sGARCH hybrid model versus the ARFIMA-fGARCH 
hybrid model. Also, it will extend the works in the previous literature by examining 
long memory and volatilities in Brent crude oil prices simultaneously, by using the 
comparison of these models: ARFIMA-sGARCH model versus the ARFIMA-fGARCH 
model. Finally, this study also focuses on the interest in taking the two smallest values 
for accuracy criteria such as AIC and not just one value when choosing the best model. 
Thus, these points will be highlighted in this study. So, the purpose of this work is to 
identify structural breaks, verify that long memory is present for monthly Brent crude 
oil price data. Then, to determine the best model among ARFIMA models using some 
criteria and accuracy measures, such as AIC (Akaike information criterion) and RMSE 
(root mean squared error) in the sample. Besides, to check the residuals of the model 
for the existence of volatility or not, to determine the optimal model that can be used 
to study conditional variation (volatility) in series data through sGARCH and fGARCH 
models, to obtain the best hybrid model to predict the price of Brent crude oil in the 
short-term with the smallest error value. 
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3.  Materials and  Methods 

3.1. The Dataset 

Monthly data of the Brent crude oil price (all prices are per barrel in USA $) were 
used in this study from January 1979 to July 2019, obtained from the website: 
www.indexmundi.com/commodities/?commodity=crude-oil-brent. The data were 
divided into two parts: the first included data from January 1979 to July 2018 consisting 
of 475 observations, which were used to fit the forecasting model; while the second part 
has data from August 2018 to July 2019 consisting of 12 observations, which were used 
to test the accuracy of the in-sample forecast. Thereafter, a 13-month prediction was 
carried out outside the sample. This study uses the R-software version (3.5.3) to 
implement all statistical analyses. 

3.2. Long Memory Test and Estimation 

To check the presence of the long memory feature, there are several statistical 
methods that can be used, as described in Boutahar et al. (2007). These methods are R/S 
analysis, the aggregated variance method, and the Higuchi method. In particular, the 
range over standard deviation (R/S) analysis, which is a diagnostic of long memory, was 
the role played by Mandelbrot (1972), then Lo (1991) modified it. Mandelbrot (1972) 
found that the R/S analysis shows good properties over autocorrelation function (ACF) 
analysis and variance time function (VTF) analysis. After that, Lo (1991) modified R/S 
analysis, it is robust to short-range dependence, non-normal distributions, and 
conditional heteroscedasticity under the null hypothesis of no long-term dependence. 
This analysis achieves the following formula, as shown by Mandelbrot (1972) and Lo 
(1991): 

 𝑄ሺ୬ሻ ൌ
ோሺ౤ሻ

ௌሺ೙ሻ
ൌ  

୫ୟ୶
భರೖರ೙

∑ ሺ௑೔ି௑೙തതതതሻି ୫୧୬
భರೖರ೙

∑ ሺೖ
೔సభ ௑೔ି௑೙തതതതሻೖ

೔సభ

ሺ௡షభ ∑ ሺ௑೔ି௑೙തതതത೙
೔సభ ሻమሻ

భ
మ

                               (1) 

where                       𝑋௡തതതത ൌ 𝑛ିଵ ∑ 𝑋௜
௡
௜ୀଵ                                                                                    (2) 

and  (𝑛) is the sample size. 
Besides, Jibrin et al. (2015) mentioned that a single structural break test is a test to 

determine the presence of break. It was introduced by Chow (1960) and modified to 
the Quandt Likelihood Ratio (QLR) test for the break between (𝑡଴ and 𝑡ଵ) or called the 
Supremum F-statistic, given by:    

  𝑆𝑢𝑝 𝐹 ൌ max  ሼ𝐹ሺ𝑡଴ሻ, 𝐹ሺ𝑡଴ ൅ 1ሻ, … , 𝐹ሺ𝑡ଵሻሽ                                    (3) 
where if Supremum F-statistic > 0.05, then the test rejects the null hypothesis which is 
𝐻଴: no structural breaks. 
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On the other hand, the value of the fractional difference (𝑑) was estimated by 
several methods, which were illustrated by (Hosking, 1981; Reisen, 1994; Boutahar et 
al., 2007; Palma, 2007; Telbany and Sous, 2016). These methods are: 

The Hurst Exponent method: Reisen (1994) mentioned that this method, proposed 
by Hurst (1951, 1956) and then reviewed by McLeod and Hipel (1978), is based on the 
range (𝑅∗

ሺ௡ሻ) of the subtotals to deviate values from their mean in the time series 
divided by the standard deviation (𝐷∗

ሺ௡ሻ), which is denoted by (𝑅ሺ௡ሻ) and written as 
follows:  
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where                           𝑋ത ൌ 𝑛ିଵ ∑ 𝑋௜
௡
௜ୀଵ                                                                                  (5) 

The Geweke and Porter-Hudak (GPH) method: Based on the regression equation 
ሺ𝑌௜ሻ, Geweke and Porter-Hudak (1983) suggested the estimation for the parameter 
(𝑑መ௡), according to the following equations:          

                   𝑑መ௡ ൌ െሺ∑ ሺ𝑋௜ െ 𝑋തሻଶ௡
௜ୀଵ ሻିଵሺ∑ ሺ𝑋௜ െ 𝑋തሻሺ𝑌௜ െ 𝑌തሻ௡

௜ୀଵ ሻ                  (6) 
where                                                       𝑌௜ ൌ 𝛼 ൅ 𝛽𝑋௜ ൅ 𝜀௜                                                (7) 

                                           𝑌ത ൌ 𝑛ିଵ ∑ 𝑌௜
௡
௜ୀଵ                                                    (8) 

In contrast, the smoothed periodogram (Sperio) and fractionally-differenced 
(Fracdiff) are just functions in R-software, used to estimate the value of the fractional 
difference (d), according to the following formulas respectively: 

Reisen (1994) clarified the Sperio function, which estimates the fractional 
difference (d) in the ARFIMA(p,d,q) model. This function, represented by 𝑓௦ሺ𝑤ሻ and 
that is through the Parzen lag window, is as follows: 
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ଵ
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where                          Lሺ𝑢ሻ ൌ ቐ
1 െ 6𝑢ଶ ൅ 6|𝑢|ଷ   ,             |𝑢| ൑ 1 2⁄
2ሺ1 െ |𝑢|ሻଷ            , െ1 2⁄ ൏ 𝑢 ൑ 1 
0                               ,                  |𝑢| ൐ 1

ቑ                      (10) 

Lሺ𝑢ሻ is called the Parzen lag window generator (we select the Parzen lag window as 
it has the feature that always yields positive estimates of the spectral density), ሺcሻ is the 
parameter (commonly indicated to the ‘truncation point’) and   

      𝑅ሺsሻ ൌ
ଵ

௡
ሺ ∑ ሺ𝑋௜ െ 𝑋തሻሺ𝑋௜ା௦ െ 𝑋 ഥ ሻ௡ି௦

௜ୀଵ  ሻ        , 𝑠 ൌ 0, േ1, … , േሺ𝑛 െ 1ሻ           (11) 

indicate the sample autocovariance function. 
Hosking (1981) defined the fractionally-differenced operator, which uses the 

regression estimation method to estimate the fractional difference (d) for the ARFIMA 
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model (Olatayo and Adedotun, 2014). The (d) value is calculated by a binomial series, 
as follows: 
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3.3. Models Specification 

The definitions of the ARIMA model were proposed by Box and Jenkins (Box et al., 
2008) as follows. A stationary time series }{ tx  is called an Autoregressive Integrated 
Moving Average model of order ( qdp ,, ) denoted by ( ),,( qdpARIMA ), if 

 𝜙௣ሺ𝐵ሻ∇ௗ𝑥௧ ൌ 𝜃௤ሺ𝐵ሻ𝜖௧                                                      (13) 
whereas,                               )....1()( 2

21
p

pp BBBB                         (14) 

                       )...1()( 2
21

q
qq BBBB                             (15) 

                          dd B)1(                                                                      (16) 
where )(Bp  is a polynomial of autoregressive for order ሺ 𝑝 ሻ denoted by AR(p); 

)(Bq  is a polynomial of moving average for order ሺ 𝑞 ሻ denoted by MA(q). The integer 
number ሺ 𝑑 ሻ is the non-seasonal difference order. ሺ 𝐵 ሻ are the backward shift 
operators defined by ktt

k XXB  . ሺ ∇ ሻ are the non-seasonal difference operators. 
Furthermore, ሺ 𝜖௧ ሻ is a white noise process. 

ARFIMA model is the same as the ARIMA model above, but the essence of the 
difference between them is in the value of ሺ𝑑ሻ. If 𝑑 ∈ ሺ0, 0.5ሻ, then the data has a long 
memory. While intermediate memory if 𝑑 ∈ ሺെ0.5,0ሻ. However, when  𝑑 ൌ 0, then 
the data has a short memory (for mathematical details, see Beran (1994) page 60).  

3.4. GARCH  Models 

In 1986, Bollerslev expanded the Autoregressive Conditional Heteroscedasticity 
(ARCH) model with order ሺ 𝑞 ሻ, which Engle developed in 1982, to become the 
Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model with 
order ሺ𝑝, 𝑞ሻ (Francq and Zakoian, 2019). The first model depends on uncorrelated 
random error values ሺ 𝜀௧ ሻ. In contrast, the GARCH model relies on conditional 
variation. The general form of the 𝐺𝐴𝑅𝐶𝐻ሺ𝑝, 𝑞ሻ model is given by Francq and Zakoian 
(2019) as follows: 

𝜀௧ ൌ 𝜂௧𝜎௧,              𝑤𝑖𝑡ℎ     𝜂௧  𝑁ሺ0,1ሻ~
௜௜ௗ                                                            (17) 
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ଶ௤
௜ୀଵ ൅ ∑ 𝛽௝

௣
௝ୀଵ 𝜎௧ି௝   

ଶ                                                             (18) 
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where 𝜔 ൐ 0 , 𝛼௜ ൒ 0 𝑎𝑛𝑑 𝛽௝ ൒ 0 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠,   𝑖 ൌ 1,2, … 𝑞,   𝑗 ൌ 1,2, … 𝑝,
𝑎𝑛𝑑  𝑡 ∈ ℤ. Whereas when 𝛽௝ ൌ 0,  then equation (18) is called  𝐴𝑅𝐶𝐻ሺ𝑞ሻ. In contrast, 
if 𝑝 ൌ 𝑞 ൌ 0, then equation (18) becomes white noise. When the conditional variance 
of the process is unknown, the Asymptotic Quasi-likelihood (AQL) methodology is 
merging the kernel technique to estimate the parameter of the GARCH model, such as 
in Alzghool (2017). 

3.5. Standard GARCH (sGARCH) Model 

The conditional variance ሺ 𝜎௧
ଶሻ at a time ሺ 𝑡 ሻ is expressed by the standard GARCH 

(p,q) model, the same as the equation (18), where ሺ 𝜀௧ ሻ is considered the residual 
returns, as the equation (17), which have been mentioned above (Miah and Rahman, 
2016). 

3.6. Functional GARCH (fGARCH) Model  

Given the urgent need to describe the high-frequency volatilities that abound in the 
financial statements, a proper rational description of this problem, known as the 
function, had to be found (Francq and Zakoian, 2019). In 2013, Hörmann et al. 
suggested the functional approach of the ARCH model, then expanded this approach 
in 2017 by Aue et al., as mentioned by Francq and Zakoian (2019), through focusing on 
fGARCH(1,1) process such as in Aue et al. (2017), as shown below: 

                    𝜎௜
ଶ ൌ 𝛿 ൅ α𝜀௜ିଵ

ଶ ൅ β𝜎௜ିଵ
ଶ                                                        (19) 

where ሺ 𝜀௧ ሻ is a sequence of random functions satisfying the equation (17), 𝛿 ൒ 0, 𝛼 ൒
0 , 𝛽 ൒ 0  𝑎𝑛𝑑  𝑖 ∈ ℤ. 

Note that for  𝑡 ∈ ሾ0,1ሿ and ሺ𝑥ሻ is an arbitrary element of the Hilbert space  ℋ ൌ
𝐿ଶሾ0,1ሿ, the integral operators ሺ𝛼ሻ  𝑎𝑛𝑑  ሺ𝛽ሻ are defined by ሺ𝛼𝑥ሻሺ௧ሻ ൌ

׬ 𝛼ሺ𝑡, 𝑠ሻ𝑥ሺ𝑠ሻ𝑑𝑠
ଵ

଴  and  ሺ𝛽𝑥ሻሺ௧ሻ ൌ ׬ 𝛽ሺ𝑡, 𝑠ሻ𝑥ሺ𝑠ሻ𝑑𝑠.
ଵ

଴  The integral kernel functions 
 αሺ𝑡, 𝑠ሻ and  βሺ𝑡, 𝑠ሻ are elements on 𝐿ଶሾ0,1ሿଶ. 

As mentioned above, their approach depends on a daily division of the data (Francq 
and Zakoian, 2019), with the possibility for other time units (Aue et al., 2017), for 
example a monthly time unit, (see Aue et al., 2017; Francq and Zakoian, 2019 for more 
details). 

3.7. Hybrid ARFIMA-GARCH  Models 

If the variance of the 𝐴𝑅𝐹𝐼𝑀𝐴ሺ𝑝, 𝑑, 𝑞ሻ model can be modelled by a 𝐺𝐴𝑅𝐶𝐻ሺ𝑝, 𝑞ሻ 
process, then this model is to be termed a hybrid 𝐴𝑅𝐹𝐼𝑀𝐴ሺ𝑝, 𝑑, 𝑞ሻ െ GARCHሺp, qሻ. 
This model was defined by Palma (2007) as follows:  

  𝜙௣ሺ𝐵ሻ∇ௗ𝑥௧ ൌ 𝜃௤ሺ𝐵ሻ𝜀௧                                                     (20) 
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where                      𝜀௧ ൌ 𝜂௧𝜎௧  ,                 𝑤𝑖𝑡ℎ     𝜂௧  𝑁ሺ0,1ሻ~
௜௜ௗ                                         (21) 

          𝜎௧
ଶ ൌ 𝜔 ൅ ∑ 𝛼௜𝜀௧ି௜

ଶ௤
௜ୀଵ ൅ ∑ 𝛽௝

௣
௝ୀଵ 𝜎௧ି௝   

ଶ                                             (22) 

According to the above, each model of the hybrid models will be estimated 
𝐴𝑅𝐹𝐼𝑀𝐴ሺ𝑝, 𝑑, 𝑞ሻ െ 𝑠𝐺𝐴𝑅𝐶𝐻ሺ𝑝, 𝑞ሻ and 𝐴𝑅𝐹𝐼𝑀𝐴ሺ𝑝, 𝑑, 𝑞ሻ െ 𝑓𝐺𝐴𝑅𝐶𝐻ሺ𝑝, 𝑞ሻ under 
different distributions. Namely, normal (norm) distribution, student’s t (std) 
distribution and generalized error (ged) distribution, see Tendai and Chikobvu (2017). 

3.8. Criteria and Accuracy Measures for Choosing the Best Model 

The fit model selection among several models is based on many criteria such as 
Akaike Information Criterion (AIC), Schwartz Bayesian Information Criterion (BIC) 
and corrected AIC (AICc) as indicated by Cryer and Chan (2008). They are given by 
the following formulas: 

  𝐴𝐼𝐶 ൌ െ2 lnሺ𝑙ሻ ൅ 2𝑘                                                                                    (23) 

  𝐵𝐼𝐶 ൌ െ2 lnሺ𝑙ሻ ൅ 𝑘𝑙𝑛ሺ𝑛ሻ                                                                             (24) 

  𝐴𝐼𝐶𝑐 ൌ െ2 lnሺ𝑙ሻ ൅ 2𝑘 ൅
ଶሺ௞ାଵሻሺ௞ାଶሻ

௡ି௞ିଶ
                                                            (25) 

where ሺ𝑙ሻ is a maximum likelihood for the model, ሺ𝑘ሻ is the total number of parameters 
ሺ𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑘 ൌ 𝑝 ൅ 𝑞ሻ through the equations (14) and (15) respectively, while ሺ𝑛ሻ is 
the number of observations. Therefore, the best model which gives the lowest value for 
these AIC, BIC and AICc criteria. Furthermore, the Root Mean Square Error (RMSE) 
is one of the accuracy measures which is used for evaluation of the performance of the 
model, as explained by Montgomery et al. (2015), as follows: 

   𝑅𝑀𝑆𝐸 ൌ ටଵ

௡
∑ ሺ𝑌௧ െ 𝑌෠௧ሻଶ௡

௧ୀଵ                                                                              (26) 

where ሺ𝑌௧ሻ is the actual value and ሺ𝑌෠௧ሻ is the forecasted value. 

4. Results and Discussion 

The monthly Brent crude oil price series is denoted by {𝑋௧ሽ and ሺ𝑡ሻ represents the 
time in months. Figure 1 displays the time series plot ሼ𝑋௧ሽ for the dataset from January 
1979 to July 2019. Through the ሼ𝑋௧ሽ series, large fluctuations are observed over time, 
especially in 2008. The descriptive statistics of the monthly Brent crude oil price that 
consists of 487 observations have a mean of 42.95, a median of 30.20 and a positive 
skewness of 1.177466. For this reason, the tail of the series is on the left side.  
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Figure 1. Time series plot for monthly Brent crude oil price ($/bbl) 

Therefore, this series was studied in terms of having a long memory feature, 
through graphing and necessary statistical methods. The graph of the Autocorrelation 
Function (ACF) for time series data in Figure 2 shows a slow decrease.  

 
Figure 2. ACF plot for 𝑋௧ 

This gives a preliminary conclusion that there is a long memory, this is confirmed 
by Table 1 through several statistical methods. 

Table 1. Long Memory Tests 

R/S 
Analysis 

Aggregated Variance 
Method 

Higuchi 
Method 

H = 0.8531864 H = 0.7910981 H = 0.9578515 

The above table shows the results of three tests to check for the presence of long 
memory. It is noted that all values of (H) are greater than 0.5, which gives a firm 
conclusion to the existence of the long memory of the price for Brent crude oil data. 
Furthermore, the structural breaks are visible in the dataset series. Where, there exists 
four breaks for Brent are displayed in Figure 3 with the first, second, third, and last 
break captured in 1986, 1999, 2005, and 2013 respectively. 
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Figure 3. Monthly Brent crude oil price ($/bbl) with breaks and their confidence intervals 

Besides, Table 2 displays the test result of the structural breaks using the QLR test. 
Note that the null hypothesis for the structural breaks is rejected as the Sup-F statistic 
is too large (1190) and the P-values < 0.05. 

Table 2. Structural Break Test 

QLR P-value 
1190 < 2.2e-16 

 
Based on the P-value for the Jarque Bera test (< 2.2e-16) and the coefficient of 

skewness mentioned earlier, this series is considered not normal. So, the ሼ𝑥௧ሽ 
transformation must be done. Assume that ሼ𝑌௧ሽ represents the growth rate for ሼ𝑋௧ሽ as 
in the following formula: 

            𝑌௧ ൌ log ሺ𝑋௧ሻ                                                              (27) 

Figure 4 displays the growth rate time series plot ሼ𝑌௧ሽ for the series ሼ𝑋௧ሽ. 

 
Figure 4. Time series plot for 𝑌௧  
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In contrast, the Autocorrelation Function (ACF) and Partial Autocorrelation 
Functions (PACF) for ሼ𝑌௧ሽ are given in Figure 5. It shows that the series is not white noise.  

Based on the above results, the fractional difference ሺdሻ values for the ሼ 𝑌௧ ሽ series 
will be estimated in several different methods and functions, as shown in Table 3, where 
the value of the fractional difference using the Hurst Exponent method is 0.3589648, 
the value by the Sperio function estimate is 0.4984955, and the value of 0.4994726 was 
the result of Fractionally-Differenced function estimate. In contrast, the value of 
0.7676326, which is due to Geweke and Porter-Hudak method estimate, is excluded 
because it is greater than 0.5. 

 
Figure 5. ACF and PACF plot for 𝑌௧  

Table 3. Fractional Difference Values for 𝑌௧  Series 

Tables (4-6) and Figure 6 respectively, illustrate the stationary test using the 
Augmented Dickey-Fuller (ADF) test and Phillips-Perron (PP) test. Note that the ሼ 𝑌௧ ሽ 
series is stationary after taking the fractional difference (d) based on the different 
methods and functions shown in tables. Whereas, the fractional difference for the series 
{𝑌௧ሽ will be treated according to equation (12) as follows:              

                               𝑍௧ሺௗ௜ሻ ൌ 𝑑𝑖𝑓𝑓ሺ𝑌௧ሻ ൌ 𝑌௧∇ௗ௜                                                   (28) 

where,  𝑑௜ ൌ 𝑑ଵ, 𝑑ଶ  𝑎𝑛𝑑 𝑑ଷ , respectively. 

Table 4. The Stationary Test for 𝑍௧ሺௗଵሻ Series Using the Hurst Exponent Method 

Method / Function d State 
Hurst  Exponent   (d = H-0.5) 𝑑ଵ = 0.3589648 0 < 𝑑ଵ< 0.5 
Sperio   (bandw.exp = 0.3, beta = 0.74) 𝑑ଶ = 0.4984955 0 < 𝑑ଶ< 0.5 
Fractionally-Differenced    (Fracdiff) 𝑑ଷ = 0.4994726 0 < 𝑑ଷ< 0.5 
Geweke and Porter-Hudak    (GPH) 𝑑ସ = 0.7676326 0.5 < 𝑑ସ  

Method Test Value p-value State 

Hurst (𝑑ଵ = 0.3589648) 
ADF Test - 4.1727 0.01 Stationary 

PP Test - 82.923 0.01 Stationary 
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Table 5. The Stationary Test for 𝑍௧ሺௗଶሻ Series Using Sperio Function 

Table 6. The Stationary Test for 𝑍௧ሺௗଷሻ Series Using Fractionally-Differenced Function 

According to equations 23-26 above, a qualifying model is one that has the lowest 
value for AIC, AICc, BIC and RMSE. As a result of Table 7, ARFIMA(1,0.3589648,0) 
model, ARFIMA(2,0.3589648,1) model and ARFIMA(2,0.3589648,2) model have the 
lowest values for these criteria. Also, it is noted that these models are within the Hurst 
Exponent estimate, which has the lowest value for the fractional difference estimate ሺdሻ. 
As a result, the three models will be taken and compared to choose the best among them 
by moving to the next step of testing the residuals (see Al-Gounmeein and Ismail, 2020). 
While in this step, residuals testing is a necessary step to examine any model through 
several methods, including the graph for the ACF and the P-value for the Ljung-Box 
residuals test, because these methods are important measures to consider correlations 
of residuals (Montgomery et al., 2015).  

 
Figure 6. Time series plot for 𝑍௧ሺௗ௜ሻ using the fractional difference values, respectively 

By looking at Table 8, the three models do not have the property of the unit root 
for the residuals, using the P-value for the Ljung-Box test statistics at Lag(12), Lag(24) 
and Lag(36). We note that the P-value for the residuals of the third model is larger than 
the first and the second. In contrast, that model has the smallest Chi-Square statistic 
ሺ 𝜒ଶሻ at the same different Lags. This is one of the indicators that gives the conclusion 
that the ARFIMAሺ2, 0.3589648 ,2ሻ model is the best. Furthermore, it is observed that 

Function Test Value p-value State 

Sperio (𝑑ଶ = 0.4984955) 
ADF Test - 5.1927 0.01 Stationary 

PP Test - 151.34 0.01 Stationary 

Function Test Value p-value State 
Fractionally-Differenced  
(Fracdiff) 
(𝑑ଷ = 0.4994726) 

ADF Test - 5.2001 0.01 Stationary 
PP Test - 151.89 0.01 Stationary 
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through Figures 7-9, where all residuals of these models are very small by looking at the 
ACF plot and all the Ljung-Box P-values lie above the dashed line. 

Table 7. AIC, AICc, BIC, and RMSE of ARFIMA Models 

Table 8. Ljung-Box Test Statistic for the Residuals 

 

 
Figure 7. Plots of the residuals for the ARFIMAሺ1, 𝑑ଵ, 0ሻ model 

d Model AIC AICc BIC RMSE 

Hurst 
𝑑ଵ = 0.3589648 

(1, 𝒅𝟏 ,0) - 962.91 - 962.89 - 954.59 0.08730141 
(0, 𝑑ଵ ,1) - 639.85 - 639.83 - 631.52 0.1227511 
(1, 𝑑ଵ ,1) - 961.07 - 961.02 - 948.58 0.08728667 
(2, 𝑑ଵ ,0) - 961.04 - 960.99 - 948.55 0.08728949 
(0, 𝑑ଵ ,2) - 769.74 - 769.69 - 757.25 0.1068218 
(2, 𝒅𝟏 ,1) - 966.25 - 966.16 - 949.6 0.08661429 
(1, 𝑑ଵ ,2) - 962.7 - 962.62 - 946.05 0.08695112 
(2, 𝒅𝟏 ,2) - 966.07 - 965.95 - 945.26 0.08644647 

Sperio 
𝑑ଶ = 0.4984955 

(1, 𝑑ଶ ,0) - 956.67 - 956.65 - 948.35 0.08793743 
(0, 𝑑ଶ ,1) - 818.6 - 818.57 - 810.27 0.1017299 
(1, 𝑑ଶ ,1) - 954.8 - 954.75 - 942.31 0.08792554 
(2, 𝑑ଶ ,0) - 954.77 - 954.72 - 942.28 0.08792809 
(0, 𝑑ଶ ,2) - 876.59 - 876.54 - 864.1 0.09549913 
(2, 𝑑ଶ ,1) - 959.16 - 959.08 - 942.51 0.08732158 
(1, 𝑑ଶ ,2) - 955.83 - 955.75 - 939.18 0.08764342 
(2, 𝑑ଶ ,2) - 957.37 - 957.24 - 936.55 0.0873032 

Fractionally – 
Differenced 
(Fracdiff) 

𝑑ଷ = 0.4994726 

(1, 𝑑ଷ ,0) - 956.64 - 956.61 - 948.31 0.08794099 
(0, 𝑑ଷ ,1) - 819.47 - 819.44 - 811.14 0.1016366 
(1, 𝑑ଷ ,1) - 954.77 - 954.72 - 942.28 0.08792893 
(2, 𝑑ଷ ,0) - 954.74 - 954.69 - 942.25 0.08793152 
(0, 𝑑ଷ ,2) - 877.09 - 877.04 - 864.6 0.09544912 
(2, 𝑑ଷ ,1) - 959.11 - 959.02 - 942.45 0.0873277 
(1, 𝑑ଷ ,2) - 955.79 - 955.71 - 939.14 0.08764758 
(2, 𝑑ଷ ,2) - 957.31 - 957.18 - 936.49 0.08730851 

Model 
Lag (12) Lag (24) Lag (36) 

𝜒ଶ P-value 𝜒ଶ P-value 𝜒ଶ P-value 
ARFIMA(1,0.3589648,0) 23.247 0.0257 39.895 0.02195 51.031 0.04968 
ARFIMA(2,0.3589648,1) 19.037 0.08763 35.148 0.06623 44.401 0.1588 
ARFIMA(2,0.3589648,2) 17.594 0.1286 32.708 0.1104 41.946 0.2287 
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Figure 8. Plots of the residuals for the ARFIMAሺ2, 𝑑ଵ, 1ሻ model 

 

 
Figure 9. Plots of the residuals for the ARFIMAሺ2, 𝑑ଵ, 2ሻ model 

While that the P-value for the Jarque Bera test for the residual’s models 
ARFIMAሺ1, 𝑑ଵ ,0ሻ, ARFIMAሺ2, 𝑑ଵ ,1ሻ and  ARFIMAሺ2, 𝑑ଵ ,2ሻ is ൏ 2.2𝑒ିଵ଺. As for the 
P-value for the Shapiro-Wilk normality test for these models’ residuals are 1.585𝑒ି଼, 
 1.919𝑒ିଽ, and  1.686𝑒ିଽ, respectively. As a result, these models’ residuals are not 
normally distributed. 

On the other hand, when examining the residuals, it was observed that there exists 
Heteroscedasticity and ARCH effect using the ARCH Lagrange Multiplies (ARCH-LM) 
test for the residuals and residuals squared as shown in the P-value for the three models 
of ARFIMA in Table 9. Where all P-values for residuals and residuals squared in the 
ARCH-LM test less than 0.05. Therefore, we reject 𝐻଴. This means there exists an 
ARCH effect. As well as when returning to Table 8 using the Ljung-Box test statistic. 
Certainly, illustrated by showing the Heteroskedasticity for the squared residuals in 
Figures 10-12 for these models, respectively. 
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Table 9. ARCH-LM Test for the Residuals and Residuals Squared 

 

 
Figure 10. Plots of squared residuals for ARFIMAሺ1, 𝑑ଵ, 0ሻ model 

 
Figure 11. Plots of squared residuals for ARFIMAሺ2, 𝑑ଵ, 1ሻ model 

 
Figure 12. Plots of squared residuals for ARFIMAሺ2, 𝑑ଵ, 2ሻ model 

Model P-value 
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ሺ𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠ሻଶ 

ARFIMA (1, 0.3589648 ,0) 1.275e-06 2.338e-06 
ARFIMA (2, 0.3589648 ,1) 3.92e-07 0.000185 
ARFIMA (2, 0.3589648 ,2) 8.217e-07 9.66e-06 



46                                                    R. S. Al-Gounmeein, M. T. Ismail: Modelling and forecasting monthly… 

 

 

We note from these figures that the volatility of the squared residuals changes 
significantly throughout the year in the three models. Therefore, the presence of these 
high volatility leads to the handling of GARCH family models. In other words, in the 
next steps, we will choose the appropriate GARCH model using the AIC criterion to 
get the ARFIMA-GARCH hybridization model. Thus, the AIC criterion will be used to 
choose the best model for the study of the volatility. This is illustrated by the following 
Figures 13-15 of the residuals of these models, which clarifies dealing with the type of 
Standard GARCH (sGARCH) model. 

 
Figure 13. AIC criteria for sGARCHሺp , qሻ of ARFIMAሺ1, 𝑑ଵ, 0ሻ model 

 
Figure 14. AIC criteria for sGARCHሺp , qሻ of  ARFIMAሺ2, 𝑑ଵ, 1ሻ model 

 
Figure 15. AIC criteria for sGARCHሺp , qሻ of ARFIMAሺ2, 𝑑ଵ, 2ሻ model 
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The graphical test of AIC criteria above (Figures 13-15) indicates that the best 
volatility model for these three models is sGARCH(1,1). Also, based on the smallest value 
of this criterion for sGARCHሺ1,1ሻ of ARFIMAሺ1, 𝑑ଵ ,0ሻ model, ARFIMAሺ2, 𝑑ଵ ,1ሻ model 
and ARFIMAሺ2, 𝑑ଵ ,2ሻ model is (-2.203081, -2.248740 and -2.251659), respectively.  

Table 10 presents the RMSE result of nine hybrids (ARFIMA-sGARCH) models, 
implemented in three distributions (normal distribution, student's t distribution and 
generalized error distribution). Accordingly, the ARFIMA(2,0.3589648,2)-
sGARCH(1,1) model under normal distribution is the best in modelling and forecasting 
Brent crude oil price volatility, as this model has the smallest value for RMSE.  

Table 10. RMSE of ARFIMA-sGARCH Models 
𝑑 Model RMSE 

Hurst 
𝑑ଵ = 0.3589648 

ARFIMA(1, 𝑑ଵ ,0)-sGARCH (1,1) norm 0.09680273 
ARFIMA(1, 𝑑ଵ ,0)-sGARCH (1,1) std 0.09122890 
ARFIMA(1, 𝑑ଵ ,0)-sGARCH (1,1) ged 0.09063099 
************************************* 
ARFIMA(2, 𝑑ଵ ,1)-sGARCH (1,1) norm 0.08934022 
ARFIMA(2, 𝑑ଵ ,1)-sGARCH (1,1) std 0.08964552 
ARFIMA(2, 𝑑ଵ ,1)-sGARCH (1,1) ged 0.09002362 
************************************* 
ARFIMA(2, 𝒅𝟏 ,2)-sGARCH (1,1) norm 0.08808882 
ARFIMA(2, 𝑑ଵ ,2)-sGARCH (1,1) std 0.08974343 
ARFIMA(2, 𝑑ଵ ,2)-sGARCH (1,1) ged 0.08871313 

Hence, from the result in Table 10, the optimal parameters of this model 
summarised in Table 11, where all the estimated coefficients of the 
ARFIMA(2,0.3589648,2)-sGARCH(1,1) model in Table 11 have statistical significance 
at the 5% level according to the normal distribution of the model, where the values for 
(𝛼ଵ and 𝛽ଵ) indicate that the conditional variance is positive.  

Table 11. ARFIMAሺ2, 0.3589648  ,2ሻ െ 𝑠𝐺𝐴𝑅𝐶𝐻ሺ1,1ሻ Parameters 
Parameters Estimate Standard Error Prob. 

mu - 0.451487 0.025846 0.000000 
ar(1) 1.720112 0.000499 0.000000 
ar(2) - 0.720268 0.000340 0.000000 
ma(1) - 0.853978 0.019381 0.000000 
ma(2) - 0.097814 0.004752 0.000000 
omega 0.000531 0.000190 0.005154 

𝛼ଵ 0.419994 0.080176 0.000000 
𝛽ଵ 0.579006 0.057405 0.000000 

On the other hand, volatility in the price of Brent crude oil has been studied 
through the fGARCH model. It is clear from Table 12 that the normal distribution of 
the ARFIMA(2,0.3589648,2)-fGARCH(1,1) model with -2.2515 AIC criterion has the 
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smallest RMSE. Also, the same hybridization model was obtained in Table 10 with a 
different type of GARCH family. This is shown in Table 12. 

By looking at Table 13, which shows the optimal parameters for this model, it has the 
same statistical significance as the model of ARFIMA(2,0.3589648,2)-sGARCH(1,1) in 
Table 11. In other words, the significance of alpha and beta values in the two models 
indicates that the price’s volatilities in the past period affect the current price’s volatilities. 

As a result of this study, it was found that ARFIMA(2,0.3589648,2)-sGARCH(1,1) 
model and ARFIMA(2,0.3589648,2)-fGARCH(1,1) model under normal distribution 
are equal in the value of RMSE. Thus, these two models will be taken and moved to the 
next step, the model validation phase preceding the prediction phase. 

Table 12. RMSE of ARFIMA-fGARCH Models 

𝑑 Model RMSE 

 
 
 
 

 
Hurst 
𝑑ଵ = 0.3589648 

ARFIMA(1, 𝑑ଵ ,0)-fGARCH (1,1) norm 0.09681124 
ARFIMA(1, 𝑑ଵ ,0)-fGARCH (1,1) std 0.09122962 
ARFIMA(1, 𝑑ଵ ,0)-fGARCH (1,1) ged 0.09063172 
*************************************** 
ARFIMA(2, 𝑑ଵ ,1)- fGARCH (1,1) norm 0.08934022 
ARFIMA(2, 𝑑ଵ ,1)- fGARCH (1,1) std 0.08964552 
ARFIMA(2, 𝑑ଵ ,1)- fGARCH (1,1) ged 0.09002547 
*************************************** 
ARFIMA(2, 𝒅𝟏 ,2)-fGARCH (1,1) norm 0.08808882 
ARFIMA(2, 𝑑ଵ ,2)- fGARCH (1,1) std 0.08974902 
ARFIMA(2, 𝑑ଵ ,2)- fGARCH (1,1) ged 0.08871313 

 

Table 13. ARFIMAሺ2, 0.3589648  ,2ሻ െ 𝑓𝐺𝐴𝑅𝐶𝐻ሺ1,1ሻ Parameters 

Parameters Estimate Standard Error Prob. 

mu - 0.451487 0.025847 0.000000 
ar(1) 1.720112 0.000499 0.000000 
ar(2) - 0.720268 0.000340 0.000000 
ma(1) - 0.853977 0.019381 0.000000 
ma(2) - 0.097815 0.004752 0.000000 
omega 0.000531 0.000190 0.005154 

𝛼ଵ 0.419992 0.080176 0.000000 
𝛽ଵ 0.579007 0.057405 0.000000 

 

Based on the above outcomes of the identification, estimation and diagnosis stages, 
the final validation of the two hybridization models is necessary by testing the residuals. 
By using the P-value for the Ljung-Box statistical test, we note that the P-value for the 
residuals of two hybridization models equals 0.993 > 0.05. It means that these two 
models have the property of the unit root or independent residuals. On the other hand, 
this can be confirmed by the figures for ACF of standardized residuals and ACF of 
squared standardized residuals shown in Figures 16-17 respectively (see Iqelan, 2015).   
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Figure 16. ACF of standardized residuals and squared standardized residuals  

for ARFIMA(2, 0.3589648 ,2)-sGARCH(1,1) model 

Thus, the result of this study is that one or both models can be used to modelling 
and forecasting Brent crude oil price volatility in the short-term. Due to its accuracy in 
the performance with the least predictive error, the forecast out-of-sample for the best 
two models presented (Table 14) is from August 2019 to August 2020, where the table 
shows that the forecast of conditional variance for these models is increasing slowly 
over the future period. In other words, the volatility values in the same table are 
increasing at a slow rate. This indicates uncertainty in knowing the future monthly 
price of Brent crude oil. This is confirmed by the apparent decline in monthly price - 
the series column - which will affect the future growth of the global economy and the 
price of the dollar. Consequently, it will affect global oil production. 

 
Figure 17. ACF of standardized residuals and squared standardized residuals  

for ARFIMA(2, 0.3589648 ,2)-fGARCH(1,1) model 
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Table 14. Forecast Out-of-Sample for ARFIMAሺ2, 0.3589648  ,2ሻ െ 𝑠𝐺𝐴𝑅𝐶𝐻ሺ1,1ሻ Model and 
ARFIMAሺ2, 0.3589648  ,2ሻ െ 𝑓𝐺𝐴𝑅𝐶𝐻ሺ1,1ሻ Model 

 
The result of this study calls for the development of the best strategic plans and 

vision for the future by economists, investors, and analysts to take advantage of the 
uncertainty in Brent crude oil prices in the future. Also, it is possible to conduct similar 
studies on Brent crude oil price when the case study for the fractional difference value 
is greater than 0.5 for ARFIMA models or the study of ARFIMA models in terms of 
seasonal presence.  

5. Conclusion  

This paper is designed to determine the modelling and forecasting of monthly 
Brent crude oil price and its volatility. Also, it extended the works from the previous 
literature by examining long memory and volatilities in the dataset simultaneously, by 
using the comparison of the ARFIMA-sGARCH models versus the ARFIMA-fGARCH 
models. It was noted that the ARFIMA(2,0.3589648,2)-sGARCH(1,1) model and 
ARFIMA(2,0.3589648,2)-fGARCH(1,1) model under normal distribution with RMSE, 
which equals (0.08808882) are the best for these data, where these models outperform 
other several models in modelling and forecasting the volatility. The forecasts for these 
models indicated a decline in the price in the short-term. On the other hand, the Hurst 
Exponent method outperformed constructing an appropriate hybridization model to 
predict. Finally, we obtained distinct results for our study that distinguish it from other 
previous studies, namely: two-hybrid models of long memory phenomenon (ARFIMA) 
were obtained with two members of the GARCH family (sGARCH and fGARCH) 
having the same accuracy in RMSE value. Also, the best model does not have the 
smallest AIC value, which gives the conclusion that taking a single value for the AIC 

 
Year 

 
Month 

ARFIMAሺ2, 𝑑ଵ ,2ሻ െ 𝑠𝐺𝐴𝑅𝐶𝐻ሺ1,1ሻ ARFIMAሺ2, 𝑑ଵ ,2ሻ െ 𝑓𝐺𝐴𝑅𝐶𝐻ሺ1,1ሻ 
Series Sigma Series Sigma 

2019 

Aug 
Sep 
Oct 
Nov 
Dec 

64.436 
63.810 
63.311 
62.709 
62.214 

4.4553 
4.4756 
4.4959 
4.5160 
4.5360 

64.436 
63.810 
63.311 
62.709 
62.214 

4.4553 
4.4756 
4.4959 
4.5160 
4.5360 

2020 

Jan 
Feb 
Mar 
Apr 
May 
Jun 
Jul 
Aug 

61.634 
61.144 
60.584 
60.100 
59.558 
59.081 
58.557 
58.088 

4.5559 
4.5758 
4.5955 
4.6150 
4.6345 
4.6539 
4.6732 
4.6924 

61.634 
61.144 
60.584 
60.100 
59.559 
59.081 
58.557 
58.088 

4.5559 
4.5757 
4.5954 
4.6150 
4.6345 
4.6539 
4.6732 
4.6924 
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criterion is not sufficient to choose the best model among the models. Therefore, it is 
proposed to consider taking the two smallest values in accuracy criteria such as AIC 
and not just the smallest value, and this is what this study showed. 
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